1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
| #include<iostream>
#define LH + 1 #define EH 0 #define RH - 1
using namespace std;
typedef struct BSTNode { int data; int bf; struct BSTNode *lchild, *rchild; }BSTNode, *BSTree;
void OnOrder(BSTree T, int l, int r, int cen, int fa) { if(T) { OnOrder(T->lchild, 1, 0, cen + 1, T->data); if(fa == -1) cout << "根节点" << " 该点为:" << T->data << " 层数为:" << cen << " bf为" << T->bf << endl; else { if(l) cout << "该点为:" << T->data << " 该节点为 " << fa << " 的左儿子" << " 层数为:" << cen << " bf为" << T->bf << endl; if(r) cout << "该点为:" << T->data << " 该节点为 " << fa << " 的右儿子" << " 层数为:" << cen << " bf为" << T->bf << endl; } OnOrder(T->rchild, 0, 1, cen + 1, T->data); } }
bool EQ(int key1, int key2) { if(key1 == key2) return true; else return false; }
bool LT(int key1, int key2) { if(key1 < key2) return true; else return false; }
void R_Rotate(BSTree &p) { BSTree lc = p->lchild; p->lchild = lc->rchild; lc->rchild = p; p = lc; }
void L_Rotate(BSTree &p) { BSTree rc = p->rchild; p->rchild = rc->lchild; rc->lchild = p; p = rc; }
void LeftBalance(BSTree &T) { BSTree lc = T->lchild; switch (lc->bf) { case LH: T->bf = lc->bf = EH; R_Rotate(T); break; case RH: { BSTree rd = lc->rchild; switch (rd->bf) { case LH: T->bf = RH; lc->bf = EH; break; case RH: T->bf = EH; lc->bf = LH; break; case EH: T->bf = EH; lc->bf = EH; } rd->bf = EH; L_Rotate(T->lchild); R_Rotate(T); break; } case EH: T->bf = LH; lc->bf = RH; R_Rotate(T); break; } }
void RightBalance(BSTree &T) { BSTree rc = T->rchild; switch (rc->bf) { case RH: T->bf = rc->bf = EH; L_Rotate(T); break; case LH: { BSTree rd = rc->lchild; switch (rd->bf) { case LH: T->bf = EH; rc->bf = RH; break; case RH: T->bf = LH; rc->bf = EH; break; case EH: T->bf = EH; rc->bf = EH; break; } rd->bf = EH; R_Rotate(T->rchild); L_Rotate(T); break; } case EH: T->bf = RH; rc->bf = LH; L_Rotate(T); break; } }
int InsertAVL(BSTree &T, int key, bool &taller) { if(!T) { T = (BSTree)malloc(sizeof(BSTNode)); T->data = key; T->lchild = T->rchild = NULL; T->bf = EH; taller = true; } else { if(EQ(key, T->data)) { taller = false; return 0; } if(LT(key, T->data)) { if(!InsertAVL(T->lchild, key, taller)) return 0; if(taller) switch (T->bf) { case LH: LeftBalance(T); taller = false; break; case EH: T->bf = LH; taller = true; break; case RH: T->bf = EH; taller = false; } } else { if(!InsertAVL(T->rchild, key, taller)) return 0; if(taller) { switch (T->bf) { case LH: T->bf = EH; taller = false; break; case EH: T->bf = RH; taller = true; break; case RH: RightBalance(T); taller = false; break; } } } return 1; } }
BSTree root;
bool DeleteAVL(BSTree &T, int key, bool &lower);
void getRoot(BSTree T) { root = T; }
void Delete(BSTree &p) { BSTree q; if(!p->lchild) { q = p; p = p->rchild; free(q); } else if(!p->rchild) { q = p; p = p->lchild; free(q); } else { q = p; BSTree t = p; BSTree s = p->lchild; while(s->rchild) { q = s; s = s->rchild; } BSTree tmp = s->lchild; int x = s->data; bool lower = false; DeleteAVL(root, x, lower); if(q != t) q->rchild = tmp; else q->lchild = tmp; t->data = x; } }
bool DeleteAVL(BSTree &T, int key, bool &lower) { if(!T) { lower = false; return false; } else { if(EQ(key, T->data)) { Delete(T); lower = true; } else if(LT(key, T->data)) { if(!DeleteAVL(T->lchild, key, lower)) return false; if(lower) { switch (T->bf) { case EH: T->bf = RH; lower = false; break; case LH: T->bf = EH; lower = true; break; case RH: RightBalance(T); lower = true; break; } } } else { if(!DeleteAVL(T->rchild, key, lower)) return false; if(lower) { switch (T->bf) { case EH: T->bf = LH; lower = false; break; case RH: T->bf = EH; lower = true; break; case LH: LeftBalance(T); lower = true; break; } } } return true; } }
int main() { BSTree T; T = NULL; int num; cout << "请输入树的结点数:" << endl; cin >> num; cout << "依次输入每个结点的 data 值,空格分开" << endl; for(int i = 0;i < num;i++) { int key; cin >> key; bool taller = false; InsertAVL(T, key, taller); } cout << "构建的平衡二叉树为:" << endl; OnOrder(T, 0, 0, 1, -1); cout << "请输入删除的结点数:" << endl; cin >> num; cout << "依次输入删除的结点的data值,空格分开" << endl; for(int i = 0;i < num;i++) { getRoot(T); int key; cin >> key; bool lower = false; DeleteAVL(T, key, lower); } cout << "删除后的平衡二叉树为:" << endl; OnOrder(T, 0, 0, 1, -1); return 0; }
|